Hafnium isotopic variations in volcanic rocks from the Caribbean Large Igneous Province and Galpagos hot spot tracks

نویسندگان

  • J. Geldmacher
  • B. B. Hanan
چکیده

[1] We report Hf isotope compositions of 79 lavas that record the early ( 5–95 Ma) history of the Galápagos plume volcanism. These include lavas from the Caribbean Large Igneous Province (CLIP; 95–70 Ma), the accreted Galápagos paleo-hot spot track terranes (54–65 Ma) of Costa Rica (Quepos, Osa and Burica igneous complexes), and the Galápagos hot spot tracks (<20 Ma) located on the Pacific seafloor (Cocos, Carnegie, Malpelo, and Coiba Ridges and associated seamounts). These samples have previously been well characterized in terms of major and trace elements, Sr-Nd-Pb isotopes and Ar/Ar ages. As a result of the relative immobility of the high field strength and rare earth elements during synand post-emplacement hydrothermal activity and low-temperature alteration, combined Lu-Hf and Sm-Nd isotope systematics, when used in conjunction with Pb isotopes, provide a particular powerful tool, for evaluating the source compositions of ancient and submarine lavas. The combined Nd-Hf isotope data suggest that three of the isotopically distinct source components found today in the Galápagos Islands (the Floreana-like southern component, the Fernandina-like central component, and the depleted Genovesa-like eastern component) were present in the CLIP already by 95–70 Ma. The fourth Pinta-like northern component is first recorded at about 83–85 Ma by volcanism taking place during the transition from the plume head/CLIP to plume tail stage and has then been present in the hot spot track continuously thereafter. The identification of the unique northern and southern Galápagos Plume Hf-Nd-Pb isotope G Geochemistry Geophysics Geosystems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hafnium isotopic variations in volcanic rocks from the Caribbean Large Igneous Province and Galápagos hot spot tracks

[1] We report Hf isotope compositions of 79 lavas that record the early ( 5–95 Ma) history of the Galápagos plume volcanism. These include lavas from the Caribbean Large Igneous Province (CLIP; 95–70 Ma), the accreted Galápagos paleo-hot spot track terranes (54–65 Ma) of Costa Rica (Quepos, Osa and Burica igneous complexes), and the Galápagos hot spot tracks (<20 Ma) located on the Pacific seaf...

متن کامل

Continental igneous rock composition: A major control of past global chemical weathering

The composition of igneous rocks in the continental crust has changed throughout Earth's history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [(87Sr/86Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of (87Sr/86Sr...

متن کامل

Silicic volcanism: An undervalued component of large igneous provinces and volcanic rifted margins

Silicic volcanic rocks are associated with most, if not all, continental ×ood basalt provinces and volcanic rifted margins, where they can form substantial parts of the eruptive stratigraphy and have eruptive volumes >104 km3. Poor preservation of silicic volcanic rocks following kilometer-scale uplift and denudation of the volcanic rifted margins, however, can result in only deeper level struc...

متن کامل

Petrography, geochemistry, magmatic evolution and tectenomagmatic setting of igneous rocks associated with Nikuyeh epithermal mineralization (west of Qazvin)

The Nikuyeh district is located south of the Tarom-Hashtjin metallogenic province in Western Alborz. Oligo-Miocene subvolcanic intrusion and Mid-Eocene volcanic rocks with composition of dacite to andesite are main igneous settings associated with Nikuyeh polymetallic epithermal ore mineralization. Igneous phase in the Nikuyeh district are porphyritic granodiorite, monzodiorite, quartz monsonit...

متن کامل

Galapagos-OIB signature in southern Central America: Mantle refertilization by arc–hot spot interaction

[1] Although most Central American magmas have a typical arc geochemical signature, magmas in southern Central America (central Costa Rica and Panama) have isotopic and trace element compositions with an ocean island basalt (OIB) affinity, similar to the Galapagos-OIB lavas (e.g., Ba/La < 40, La/Yb > 10, Pb/Pb > 18.8). Our new data for Costa Rica suggest that this signature, unusual for a conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003